Abstract

DNA sequence elimination and rearrangement occurs during the development of somatic cell lineages of eukaryotes and was first discovered over a century ago. However, the significance and mechanism of chromatin elimination are not understood. DNA elimination also occurs during the development of the somatic macronucleus from the germinal micronucleus in unicellular ciliated protozoa such as Tetrahymena thermophila. In this study foldback DNA from the micronucleus was used as a probe to isolate ten clones. All of those tested (4/4) contained sequences that were repetitive in the micronucleus and rearranged in the macronucleus. The presence of inverted repeated sequences was clearly demonstrated in one of them by electron microscopy. DNA sequence analysis showed that the left portion of this clone contains three tandem, directly repeated copies of a 340-bp sequence, a 120-bp portion of which appears in inverted orientation at a 1.6-kb distance. This clone, pTtFB1, was subjected to a detailed analysis of its developmental fate. Subregions were subcloned and used as probes against Southern blots of micronuclear and macronuclear DNA. We found that all subregions defined repeated sequence families in the micronuclear genome. A minimum of four different families was defined, two of which are retained in the macronucleus and two of which are completely eliminated. The inverted repeat family is retained with little rearrangement. Two of the families, defined by subregions that do not contain parts of the inverted repeat, one in the "loop" and one in the "right flanking region," are totally eliminated during macronuclear development--and contain open reading frames. A fourth family occurs in the "loop" region and is rearranged extensively during development. The two gene families that are eliminated are stable in the micronuclear genome but are not clustered together as evidenced by experiments in which DNAs from nullisomic strains are used to map family members to specific micronuclear chromosomes. The inverted repeat family is also stable in the micronuclear genome and is dispersed among several chromosomes. The significance of retained inverted repeats to the process of elimination is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.