Abstract

Bacteria and Archaea are traditionally regarded as organisms with a simple morphology constrained to a size of 2-3 µm. Nevertheless, the history of microbial research is rich in the description of giant bacteria exceeding tens and even hundreds of micrometers in length or diameter already from its early days, for example, Beggiatoa spp., to the present, for example, Candidatus Thiomargarita magnifica. While some of these giants are still being studied, some were lost to science, with merely drawings and photomicrographs as evidence for their existence. The physiology and biogeochemical role of giant bacteria have been studied, with a large focus on those involved in the sulfur cycle. With the onset of the genomic era, no special emphasis has been given to this group, in an attempt to gain a novel, evolutionary, and molecular understanding of the phenomenon of bacterial gigantism. The few existing genomic studies reveal a mysterious world of hyperpolyploid bacteria with hundreds to hundreds of thousands of chromosomes that are, in some cases, identical and in others, extremely different. These studies on giant bacteria reveal novel organelles, cellular compartmentalization, and novel mechanisms to combat the accumulation of deleterious mutations in polyploid bacteria. In this perspective paper, we provide a brief overview of what is known about the genomics of giant bacteria and build on that to highlight a few burning questions that await to be addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.