Abstract

Recent developments in cell processing and immunosuppressive strategies has allowed the safe infusion of high numbers of donor T cells in the context of clinical haploidentical hematopoietic stem cell transplantation (HSCT). Haploidentical T cells display an intrinsic ability to recognize and eliminate residual patient leukemic cells, largely due to alloreactivity against the patient-specific human leukocyte antigen (HLA) molecules encoded on the mismatched haplotype. However, recent evidence has shown that leukemia, like many other tumors displaying pronounced genomic instability, is frequently able to evade this potent graft-versus-leukemia effect by undergoing de novo genomic mutations, which result in the permanent loss of only those HLA molecules targeted by haploidentical donor T-cell alloreactivity. This review summarizes the recent clinical and experimental evidence regarding this phenomenon, and its therapeutic and clinical consequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.