Abstract
BackgroundAmong the members of the genus Bordetella B. petrii is unique, since it is the only species isolated from the environment, while the pathogenic Bordetellae are obligately associated with host organisms. Another feature distinguishing B. petrii from the other sequenced Bordetellae is the presence of a large number of mobile genetic elements including several large genomic regions with typical characteristics of genomic islands collectively known as integrative and conjugative elements (ICEs). These elements mainly encode accessory metabolic factors enabling this bacterium to grow on a large repertoire of aromatic compounds.ResultsDuring in vitro culture of Bordetella petrii colony variants appear frequently. We show that this variability can be attributed to the presence of a large number of metastable mobile genetic elements on its chromosome. In fact, the genome sequence of B. petrii revealed the presence of at least seven large genomic islands mostly encoding accessory metabolic functions involved in the degradation of aromatic compounds and detoxification of heavy metals. Four of these islands (termed GI1 to GI3 and GI6) are highly related to ICEclc of Pseudomonas knackmussii sp. strain B13. Here we present first data about the molecular characterization of these islands. We defined the exact borders of each island and we show that during standard culture of the bacteria these islands get excised from the chromosome. For all but one of these islands (GI5) we could detect circular intermediates. For the clc-like elements GI1 to GI3 of B. petrii we provide evidence that tandem insertion of these islands which all encode highly related integrases and attachment sites may also lead to incorporation of genomic DNA which originally was not part of the island and to the formation of huge composite islands. By integration of a tetracycline resistance cassette into GI3 we found this island to be rather unstable and to be lost from the bacterial population within about 100 consecutive generations. Furthermore, we show that GI3 is self transmissible and by conjugation can be transferred to B. bronchiseptica thus proving it to be an active integrative and conjugative elementConclusionThe results show that phenotypic variation of B. petrii is correlated with the presence of genomic islands. Tandem integration of related islands may contribute to island evolution by the acquisition of genes originally belonging to the bacterial core genome. In conclusion, B. petrii appears to be the first member of the genus in which horizontal gene transfer events have massively shaped its genome structure.
Highlights
Among the members of the genus Bordetella B. petrii is unique, since it is the only species isolated from the environment, while the pathogenic Bordetellae are obligately associated with host organisms
Among the mobile genetic elements involved in horizontal gene transfer (HGT) genomic islands are of particular relevance since they can comprise large genomic regions encoding accessory factors required by the bacteria to thrive in specific environments
Only few presumptive horizontal gene transfer events are known among the pathogenic members of the genus, e.g. a 66 kb island encoding iron transport genes that presumably has been exchanged between B. pertussis and B. holmesii, a pathogenic species mainly found in immunocompromised individuals [12]
Summary
Among the members of the genus Bordetella B. petrii is unique, since it is the only species isolated from the environment, while the pathogenic Bordetellae are obligately associated with host organisms. Another feature distinguishing B. petrii from the other sequenced Bordetellae is the presence of a large number of mobile genetic elements including several large genomic regions with typical characteristics of genomic islands collectively known as integrative and conjugative elements (ICEs). These elements mainly encode accessory metabolic factors enabling this bacterium to grow on a large repertoire of aromatic compounds. In agreement with this assumption, B. pertussis harbors numerous pseudogenes and virtually all B. pertussis genes have counterparts in B. bronchiseptica [13]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.