Abstract

Vancomycin-resistant Enterococcus (VRE) is an increasingly identified cause of human disease, with most infections resulting from the vanA and vanB genotypes; less is known about other clinically relevant genotypes. Here we report a genomic exploration of a vanD VRE faecium (VREfm), which arose de novo during a single infectious episode. The genomes of the vancomycin-susceptible E. faecium (VSEfm) recipient and resulting VREfm were subjected to long-read sequencing and closed, with whole-genome alignments, cross-mapping and orthologue clustering used to identify genomic variation. Three key differences were identified. (i) The VREfm chromosome gained a 142.6 kb integrative conjugative element (ICE) harbouring the vanD locus. (ii) The native ligase (ddl) was disrupted by an ISEfm1 insertion. (iii) A large 1.74 Mb chromosomal inversion of unknown consequence occurred. Alignment and phylogenetic-based comparisons of the VREfm with a global collection of vanD-harbouring genomes identified strong similarities in the 120-160 kb genomic region surrounding vanD, suggestive of a common mobile element and integration site, irrespective of the diverse taxonomic, geographical and host origins of the isolates. This isolate diversity revealed that this putative ICE (and its source) is globally disseminated and is capable of being acquired by different genera. Although the incidence of vanD VREfm is low, understanding its emergence and potential for spread is crucial for the ongoing efforts to reduce antimicrobial resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.