Abstract

Human chromosome 15q25 is involved in several disease-associated structural rearrangements, including microdeletions and chromosomal markers with inverted duplications. Using comparative fluorescence in situ hybridization, strand-sequencing, single-molecule, real-time sequencing and Bionano optical mapping analyses, we investigated the organization of the 15q25 region in human and nonhuman primates. We found that two independent inversions occurred in this region after the fission event that gave rise to phylogenetic chromosomes XIV and XV in humans and great apes. One of these inversions is still polymorphic in the human population today and may confer differential susceptibility to 15q25 microdeletions and inverted duplications. The inversion breakpoints map within segmental duplications containing core duplicons of the GOLGA gene family and correspond to the site of an ancestral centromere, which became inactivated about 25 million years ago. The inactivation of this centromere likely released segmental duplications from recombination repression typical of centromeric regions. We hypothesize that this increased the frequency of ectopic recombination creating a hotspot of hominid inversions where dispersed GOLGA core elements now predispose this region to recurrent genomic rearrangements associated with disease.

Highlights

  • Human chromosome 15 was generated by the chromosome fission of an ancestral submetacentric chromosome in the ancestor of great apes

  • Human chromosome 15 derived from a fission event that occurred in the ancestor of great apes

  • The 15q25 locus approximately corresponds to the position of the ancestral centromere [2] and is an unstable region of the human genome enriched in segmental duplications containing the GOLGA core duplicon, a ~14 kbp chromosome 15 repeat [6]

Read more

Summary

Introduction

Human chromosome 15 was generated by the chromosome fission of an ancestral submetacentric chromosome in the ancestor of great apes. The 15q25 locus approximately corresponds to the position of the ancestral centromere [2] and is an unstable region of the human genome enriched in segmental duplications containing the GOLGA core duplicon, a ~14 kbp chromosome 15 repeat [6]. GOLGA is one of 14 core duplicons associated with the burst of interspersed segmental duplications in the human–great ape ancestral lineage [10, 11] and the most enriched sequence associated with segmental blocks promoting evolutionary rearrangements in primates [12,13,14] and disease instability, including Prader-Willi/Angelman syndromes, 15q13 microdeletions and 15q24 microdeletions [13, 15,16,17,18]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.