Abstract

BackgroundPredation is a fundamental mechanism for organisms to acquire energy, and various species have evolved diverse tools to enhance their hunting abilities. Among protozoan predators, raptorial Haptorian ciliates are particularly fascinating as they possess offensive extrusomes known as toxicysts, which are rapidly discharged upon prey contact. However, our understanding of the genetic processes and specific toxins involved in toxicyst formation and discharge is still limited.ResultsIn this study, we investigated the predation strategies and subcellular structures of seven Haptoria ciliate species and obtained their genome sequences using single-cell sequencing technology. Comparative genomic analysis revealed distinct gene duplications related to membrane transport proteins and hydrolytic enzymes in Haptoria, which play a crucial role in the production and discharge of toxicysts. Transcriptomic analysis further confirmed the abundant expression of genes related to membrane transporters and cellular toxins in Haptoria compared to Trichostomatia. Notably, polyketide synthases (PKS) and l-amino acid oxidases (LAAO) were identified as potentially toxin genes that underwent extensive duplication events in Haptoria.ConclusionsOur results shed light on the evolutionary and genomic adaptations of Haptorian ciliates for their predation strategies in evolution and provide insights into their toxic mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call