Abstract
Cyanobacteria are an ancient clade of photosynthetic prokaryotes, whose worldwide occurrence, especially in water, presents health hazards to humans and animals due to the production of a range of toxins (cyanotoxins). These include the sometimes co-occurring, non-encoded diaminoacid neurotoxins 2,4-diaminobutanoic acid (2,4-DAB) and its structural analogue β-N-methylaminoalanine (BMAA). Knowledge of the biosynthetic pathway for 2,4-DAB, and its role in cyanobacteria, is lacking. The aspartate 4-phosphate pathway is a known route of 2,4-DAB biosynthesis in other bacteria and in some plant species. Another pathway to 2,4-DAB has been described in Lathyrus species. Here, we use bioinformatics analyses to investigate hypotheses concerning 2,4-DAB biosynthesis in cyanobacteria. We assessed the presence or absence of each enzyme in candidate biosynthesis routes, the aspartate 4-phosphate pathway and a pathway to 2,4-DAB derived from S-adenosyl-L-methionine (SAM), in 130 cyanobacterial genomes using sequence alignment, profile hidden Markov models, substrate specificity/active site identification and the reconstruction of gene phylogenies. In the aspartate 4-phosphate pathway, for the 18 species encoding diaminobutanoate-2-oxo-glutarate transaminase, the co-localisation of genes encoding the transaminase with the downstream decarboxylase or ectoine synthase – often within hybrid non-ribosomal peptide synthetase (NRPS)-polyketide synthases (PKS) clusters, NRPS-independent siderophore (NIS) clusters and incomplete ectoine clusters – is compatible with the hypothesis that some cyanobacteria use the aspartate 4-phosphate pathway for 2,4-DAB production. Through this route, in cyanobacteria, 2,4-DAB may be functionally associated with environmental iron-scavenging, via the production of siderophores of the schizokinen/synechobactin type and of some polyamines. In the pathway to 2,4-DAB derived from SAM, eight cyanobacterial species encode homologs of SAM-dependent 3-amino-3-carboxypropyl transferases. Other enzymes in this pathway have not yet been purified or sequenced. Ultimately, the biosynthesis of 2,4-DAB appears to be either restricted to some cyanobacterial species, or there may be multiple and additional routes, and roles, for the synthesis of this neurotoxin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.