Abstract

The emergence of multicellularity in Animalia is associated with increase in ROS and expansion of tRNA-isodecoders. tRNA expansion leads to misselection resulting in a critical error of L-Ala mischarged onto tRNAThr, which is proofread by Animalia-specific-tRNA Deacylase (ATD) in vitro. Here we show that in addition to ATD, threonyl-tRNA synthetase (ThrRS) can clear the error in cellular scenario. This two-tier functional redundancy for translation quality control breaks down during oxidative stress, wherein ThrRS is rendered inactive. Therefore, ATD knockout cells display pronounced sensitivity through increased mistranslation of threonine codons leading to cell death. Strikingly, we identify the emergence of ATD along with the error inducing tRNA species starting from Choanoflagellates thus uncovering an important genomic innovation required for multicellularity that occurred in unicellular ancestors of animals. The study further provides a plausible regulatory mechanism wherein the cellular fate of tRNAs can be switched from protein biosynthesis to non-canonical functions.

Highlights

  • The ever-growing genome information has shed light on the expansion of the number of tRNA genes, which increases with the complexity of multicellular organisms (Goodenbour and Pan, 2006)

  • Despite the ubiquitous presence of Animalia-specific-tRNA Deacylase (ATD), the absence of any noticeable phenotypic and molecular changes in the ATD knockout cell lines prompted us to search for the presence of any other proofreading factor responsible for clearing L-Ala-tRNAThr in addition to ATD (Figure 1E)

  • In the case of proofreading tRNA misselection, the functional redundancy of editing L-Ala-tRNAThr by ThrRS and ATD is broken in the presence of oxidative stress

Read more

Summary

Introduction

The ever-growing genome information has shed light on the expansion of the number of tRNA genes, which increases with the complexity of multicellular organisms (Goodenbour and Pan, 2006). Such an expansion of tRNA genes led to the appearance of tRNA isodecoders that is tRNAs with identical anticodon but with sequence variation(s) elsewhere. This sequence diversification has aided the functional expansion of the tRNA molecules from mere adapters in protein translation to versatile molecules involved in many non-canonical functions.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.