Abstract

Imprinted genes in mice and humans mainly occur in clusters that are associated with differential DNA methylation of an imprint control element (ICE) and at least one nonprotein-coding RNA (ncRNA). Imprinted gene silencing is achieved by parental-specific insulator activity of the unmethylated ICE mediated by CTCF (CCCTC-binding factor) binding, or by ncRNA expression from a promoter in the unmethylated ICE. In many imprinted clusters, some genes, particularly those located furthest away from the ICE, show imprinted expression only in extraembryonic tissues. Recent research indicates that genes showing imprinted expression only in extraembryonic tissues may be regulated by different epigenetic mechanisms compared with genes showing imprinted expression in extraembryonic tissues and in embryonic/adult tissues. The study of extraembryonic imprinted expression, thus, has the potential to illuminate novel epigenetic strategies, but is complicated by the need to collect tissue from early stages of mouse development, when extraembryonic tissues may be contaminated by maternal cells or be present in limited amounts. Research in this area would be advanced by the development of an in vitro model system in which genetic experiments could be conducted in less time and at a lower cost than with mouse models. Here, we summarize what is known about the mechanisms regulating imprinted expression in mouse extraembryonic tissues and explore the possibilities for developing an in vitro model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.