Abstract
Genomic imprinting is a widespread epigenetic phenomenon in eutherian mammals, which regulates many aspects of growth and development. Parental conflict over the degree of maternal nutrient transfer is the favoured hypothesis for the evolution of imprinting. Marsupials, like eutherian mammals, are viviparous but deliver an altricial young after a short gestation supported by a fully functional placenta, so can shed light on the evolution and time of acquisition of genomic imprinting. All orthologues of eutherian imprinted genes examined have a conserved expression in the marsupial placenta regardless of their imprint status. Differentially methylated regions (DMRs) are the most common mechanism controlling genomic imprinting in eutherian mammals, but none were found in the marsupial imprinted orthologues of IGF2 receptor (IGF2R), INS or mesoderm-specific transcript (MEST). Instead, histone modification appears to be the mechanism used to silence these genes. At least three genes in marsupials have DMRs: H19, IGF2 and PEG10. PEG10 is particularly interesting as it is derived from a retrotransposon, providing the first direct evidence that retrotransposon insertion can drive the evolution of an imprinted region and of a DMR in mammals. The insertion occurred after the prototherian-therian mammal divergence, suggesting that there may have been strong selection for the retention of imprinted regions that arose during the evolution of placentation. There is currently no evidence for genomic imprinting in the egg-laying monotreme mammals. However, since these mammals do have a short-lived placenta, imprinting appears to be correlated with viviparity but not placentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.