Abstract

The research into the Drosophila melanogaster sex-determining system has been at the basis of all further research on insect sex determination. This further research has made it clear that, for most insect species, the presence of sufficient functional Transformer (TRA) protein in the early embryonic stage is essential for female sexual development. In Hymenoptera, functional analysis of sex determination by knockdown studies of sex-determining genes has only been performed for 2 species. The first is the social insect species Apis mellifera, the honeybee, which has single-locus complementary sex determination (CSD). The other species is the parasitoid Nasonia vitripennis, the jewel wasp. Nasonia has a non-CSD sex-determining system, described as the maternal effect genomic imprinting sex determination system (MEGISD). Here, we describe the arguments that eventually led to the formulation of MEGISD and the experimental data that supported and refined this model. We evaluate the possibility that DNA methylation lies at the basis of MEGISD and briefly address the role of genomic imprinting in non-CSD sex determination in other Hymenoptera.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.