Abstract

Retinitis pigmentosa (RP) is a group of inherited retinal degenerative conditions and a leading cause of irreversible blindness. 25%–30% of RP cases are caused by inherited autosomal dominant (ad) mutations in the rhodopsin (Rho) protein of the retina, which impose a barrier for developing therapeutic treatments for this genetically heterogeneous disorder, as simple gene replacement is not sufficient to overcome dominant disease alleles. Previously, we have explored using the genomic short-form of Rho (sgRho) for gene augmentation therapy of RP in a Rho knockout mouse model. We have shown improved gene expression and fewer epigenetic modifications compared with the use of a Rho cDNA expression construct. In the current study, we altered our strategy by delivering a codon-optimized genomic form of Rho (co-sgRho) (for gene replacement) in combination with an RNAi-based inactivation of endogenous Rho alleles (gene suppression of both mutant Rho alleles, but mismatched with the co-sgRho) into a homozygous RhoP23H/P23H knock-in (KI) RP mouse model, which has a severe phenotype of adRP. In addition, we have conjugated a cell penetrating TAT peptide sequence to our previously established CK30PEG10 diblock co-polymer. The DNAs were compacted with CK30PEG10-TAT diblock co-polymer to form DNA nanoparticles (NPs). These NPs were injected into the sub-retinal space of the KI mouse eyes. As a proof of concept, we demonstrated the efficiency of this strategy in the partial improvement of visual function in the RhoP23H/P23H KI mouse model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.