Abstract

BackgroundMagnetotactic bacteria (MTB) are ubiquitous in natural aquatic environments. MTB can produce intracellular magnetic particles, navigate along geomagnetic field, and respond to light. However, the potential mechanism by which MTB respond to illumination and their evolutionary relationship with photosynthetic bacteria remain elusive.ResultsWe utilized genomes of the well-sequenced genus Magnetospirillum, including the newly sequenced MTB strain Magnetospirillum sp. XM-1 to perform a comprehensive genomic comparison with phototrophic bacteria within the family Rhodospirillaceae regarding the illumination response mechanism. First, photoreceptor genes were identified in the genomes of both MTB and phototrophic bacteria in the Rhodospirillaceae family, but no photosynthesis genes were found in the MTB genomes. Most of the photoreceptor genes in the MTB genomes from this family encode phytochrome-domain photoreceptors that likely induce red/far-red light phototaxis. Second, illumination also causes damage within the cell, and in Rhodospirillaceae, both MTB and phototrophic bacteria possess complex but similar sets of response and repair genes, such as oxidative stress response, iron homeostasis and DNA repair system genes. Lastly, phylogenomic analysis showed that MTB cluster closely with phototrophic bacteria in this family. One photoheterotrophic genus, Phaeospirillum, clustered within and displays high genomic similarity with Magnetospirillum. Moreover, the phylogenetic tree topologies of magnetosome synthesis genes in MTB and photosynthesis genes in phototrophic bacteria from the Rhodospirillaceae family were reasonably congruent with the phylogenomic tree, suggesting that these two traits were most likely vertically transferred during the evolution of their lineages.ConclusionOur new genomic data indicate that MTB and phototrophic bacteria within the family Rhodospirillaceae possess diversified photoreceptors that may be responsible for phototaxis. Their genomes also contain comprehensive stress response genes to mediate the negative effects caused by illumination. Based on phylogenetic studies, most of MTB and phototrophic bacteria in the Rhodospirillaceae family evolved vertically with magnetosome synthesis and photosynthesis genes. The ancestor of Rhodospirillaceae was likely a magnetotactic phototrophic bacteria, however, gain or loss of magnetotaxis and phototrophic abilities might have occurred during the evolution of ancestral Rhodospirillaceae lineages.

Highlights

  • IntroductionMagnetotactic bacteria (MTB) can produce intracellular magnetic particles, navigate along geomagnetic field, and respond to light

  • Magnetotactic bacteria (MTB) are ubiquitous in natural aquatic environments

  • The average nucleotide identity (ANI) and average amino acid identity (AAI) of the two complete genomes are 86.7 and 73.2%, respectively, which are lower than the defined species cut-off values (> 95–96% for ANI and > 95% for AAI), indicating that XM-1 represents a novel MTB species within the genus Magnetospirillum

Read more

Summary

Introduction

MTB can produce intracellular magnetic particles, navigate along geomagnetic field, and respond to light. Magnetotactic bacteria (MTB) are a collection of microbes that produce intercellular, nanosized and chain-arranged magnetite (Fe3O4) or greigite (Fe3S4) crystals called magnetosomes [1,2,3]. Magnetosomes enable MTB to navigate along the Earth’s magnetic field, usually down to the sediment near the oxic-anoxic transition zone (OATZ), and this ability is known as magnetotaxis [4,5,6,7,8]. There is convincing evidence that some MTB are able to actively respond to different wavelengths of light, including the ultraviolet spectrum [9,10,11,12,13,14,15,16,17]. The light wavelength-dependent MMP motility and magnetic sensibility changes have been discovered [12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call