Abstract

Simple SummaryImproving the genomic prediction methodologies in high-producing dairy cattle is a key factor for the selection of suitable individuals to ensure better productivity. However, the most advanced prediction tools based on genotyping show ~75% reliability. Nowadays, the incorporation of new indices to genomic prediction methods, such as the Inbreeding Index (II), can significantly facilitate the selection of reliable production and reproductive traits for progeny selection. Thus, the objective of this study was to determine the impact of II (low: LI and high: HI), based on genomic analysis, and its effect on production and reproductive phenotypic traits in high-producing primiparous dairy cows. Individuals with II between ≥2.5 and ≤5.0 have shown up to a two-fold increase in negative correlations comparing LI versus HI genomic production and reproductive parameters, severely affecting important traits such as Milk Production at 305 d, Protein Production at 305 d, Fertility Index, and Daughter Pregnancy Rate. Therefore, high-producing dairy cows face an increased risk of negative II-derived effects in their selection programs, particularly at II ≥ 2.5.The main objective of this study was to analyze the effects of the inbreeding degree in high-producing primiparous dairy cows genotypically and phenotypically evaluated and its impacts on production and reproductive parameters. Eighty Holstein–Friesian primiparous cows (age: ~26 months; ~450 kg body weight) were previously genomically analyzed to determine the Inbreeding Index (II) and were divided into two groups: low inbreeding group (LI: <2.5; n = 40) and high inbreeding group (HI: ≥2.5 and ≤5.0; n = 40). Genomic determinations of production and reproductive parameters (14 in total), together with analyses of production (12) and reproductive (11) phenotypic parameters (23 in total) were carried out. Statistically significant differences were obtained between groups concerning the genomic parameters of Milk Production at 305 d and Protein Production at 305 d and the reproductive parameter Daughter Calving Ease, the first two being higher in cows of the HI group and the third lower in the LI group (p < 0.05). For the production phenotypic parameters, statistically significant differences were observed between both groups in the Total Fat, Total Protein, and Urea parameters, the first two being higher in the LI group (p < 0.05). Also, significant differences were observed in several reproductive phenotypic parameters, such as Number of Services per Conception, Calving to Conception Interval, Days Open Post Service, and Current Inter-Partum Period, all of which negatively influenced the HI group (p < 0.05). In addition, correlation analyses were performed between production and reproductive genomic parameters separately and in each consanguinity group. The results showed multiple positive and negative correlations between the production and reproductive parameters independently of the group analyzed, being these correlations more remarkable for the reproductive parameters in the LI group and the production parameters in the HI group (p < 0.05). In conclusion, the degree of inbreeding significantly influenced the results, affecting different genomic and phenotypic production and reproductive parameters in high-producing primiparous cows. The determination of the II in first-calf heifers is crucial to evaluate the negative effects associated with homozygosity avoiding an increase in inbreeding depression on production and reproductive traits.

Highlights

  • In the last decade, the application of genomic evaluation in dairy cattle has been a crucial tool for the analysis and selection of suitable individuals ensuring better productivity

  • The current trend is to perform evaluations based on genotyping of singlenucleotide polymorphisms (SNPs) which account for nearly 75% of reliability [3]

  • Genomic parameters for production traits were similar between the high inbreeding (HI)

Read more

Summary

Introduction

The application of genomic evaluation in dairy cattle has been a crucial tool for the analysis and selection of suitable individuals ensuring better productivity. Before the emergence of genomics, information to predict production and reproductive patterns was based on progeny selection tests that took long generation intervals [2]. The number of dairy cows genotyped for heritable traits (e.g., productive, reproductive, fitness, and conformation) is increasing [1]. This is because genomic profiles have become more reliable for predictions [4,5]. The information generated can be used to build data banks and for the exchange of specific genotypes among countries interested in improving productive and reproductive herd traits, conforming, for instance, the inter-genomic database such as Interbull (Interbull Centre, Uppsala, Sweden) [3,7,8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call