Abstract

146 Background: Metastatic castration-resistant prostate cancer (mCRPC) is the lethal form of the disease. Several recent efforts have identified genomic alterations in mCRPC, but the clinical implications of these alterations have not been fully elucidated. We conducted a prospective cohort study (n = 101) using whole genome sequencing (WGS) to analyze the association between key driver gene alterations and overall survival. We also performed whole-transcriptome RNA sequencing (RNA-seq) analyses to identify potential mechanisms of enzalutamide resistance in mCRPC. Methods: Metastasis biopsies were obtained in 101 mCRPC patients as part of the multi-institutional West Coast Prostate Cancer Dream Team project. Samples underwent WGS and RNA-seq. The resulting mutation, copy number, and structural variant calls were integrated to determine functional copy number status of candidate genes for downstream clinical analyses. We performed univariate and multivariable analyses to assess the prognostic significance of candidate genomic events with respect to overall survival. To nominate and investigate genomic pathways associated with enzalutamide resistance, we performed expression-based gene set enrichment analysis followed by cross-sectional enrichment and survival analyses related to the top nominated pathway. Results: RB1 loss was associated with poor overall survival (median 14.1 vs. 42.0 months, p < 0.001). When we compared enzalutamide resistant versus naïve samples using gene set enrichment analysis, we identified the Wnt/beta-catenin pathway as the top differentially expressed pathway in enzalutamide-resistant patients. Furthermore, CTNNB1 (beta-catenin) activating mutations were exclusive to enzalutamide-resistant patients (p = 0.013) and predictive of poor overall survival (median 13.6 vs. 41.7 months, p < 0.001). Conclusions: Impaired survival in mCRPC patients is associated with RB1 loss, identified by integrated genomic analysis of CRPC metastasis biopsies. Among men with mCRPC that was enzalutamide-resistant, the Wnt/beta-catenin pathway is nominated as an important predictive (and potentially therapeutic) pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call