Abstract

The ability of oligonucleotide probes containing short repetitive sequence motifs to differentiate between isolates of Helicobacter pylori was investigated. Genomic DNA preparations from H. pylori were digested with the restriction enzyme HindIII, electrophoresed in agarose gels and transferred to nylon filters. Five separate oligonucleotide probes were tested for hybridization sequentially to fingerprint the digested DNA from a panel of 29 clinical isolates and one type strain of H. pylori, and their relative discriminatory abilities were assessed. Four probes, (GACA)4, (GT)8, (GTG)5 and (GGAT)4, were each shown to yield highly informative hybridization band profiles allowing differentiation of H. pylori isolates. The DNA fingerprints of individual isolates obtained with each probe were distinct and reproducible. Direct comparison with ribotyping revealed that oligonucleotide fingerprinting had far superior discriminatory power. Computer-assisted similarity analysis of (GGAT)4-generated hybridization profiles of pairwise combinations of H. pylori isolates revealed that there was no correlation between ribotype and oligonucleotide fingerprint patterns. The results of this study demonstrate that oligonucleotide probes containing microsatellite sequences provide a new and powerful tool for isolate discrimination of H. pylori.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.