Abstract

Population admixture results in genome-wide combinations of genetic variants derived from different ancestral populations of distinct ancestry, thus providing a unique opportunity for understanding the genetic determinants of phenotypic variation in humans. Here, we used whole-genome sequencing of 92 individuals with high coverage (30–60×) to systematically investigate genomic diversity in the Uyghurs living in Xinjiang, China (XJU), an admixed population of both European-like and East-Asian-like ancestry. The XJU population shows greater genetic diversity, especially a higher proportion of rare variants, compared with their ancestral source populations, corresponding to greater phenotypic diversity of XJU. Admixture-induced functional variants in EDAR were associated with the diversity of facial morphology in XJU. Interestingly, the interaction of functional variants between SLC24A5 and OCA2 likely influences the diversity of skin pigmentation. Notably, selection has seemingly been relaxed or canceled in several genes with significantly biased ancestry, such as HERC2–OCA2. Moreover, signatures of post-admixture adaptation in XJU were identified, including genes related to metabolism (e.g. CYP2D6), digestion (e.g. COL11A1), olfactory perception (e.g. ANO2) and immunity (e.g. HLA). Our results demonstrated population admixture as a driving force, locally or globally, in shaping human genetic and phenotypic diversity as well as in adaptive evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call