Abstract

BackgroundSalmonella enterica serovar Typhimurium (or simply Typhimurium) is the most common serovar in both human infections and farm animals in Australia and many other countries. Typhimurium is a broad host range serovar but has also evolved into host-adapted variants (i.e. isolated from a particular host such as pigeons). Six Typhimurium strains of different phage types (defined by patterns of susceptibility to lysis by a set of bacteriophages) were analysed using Illumina high-throughput genome sequencing.ResultsVariations between strains were mainly due to single nucleotide polymorphisms (SNPs) with an average of 611 SNPs per strain, ranging from 391 SNPs to 922 SNPs. There were seven insertions/deletions (indels) involving whole or partial gene deletions, four inactivation events due to IS200 insertion and 15 pseudogenes due to early termination. Four of these inactivated or deleted genes may be virulence related. Nine prophage or prophage remnants were identified in the six strains. Gifsy-1, Gifsy-2 and the sopE2 and sspH2 phage remnants were present in all six genomes while Fels-1, Fels-2, ST64B, ST104 and CP4-57 were variably present. Four strains carried the 90-kb plasmid pSLT which contains several known virulence genes. However, two strains were found to lack the plasmid. In addition, one strain had a novel plasmid similar to Typhi strain CT18 plasmid pHCM2.ConclusionThe genome data suggest that variations between strains were mainly due to accumulation of SNPs, some of which resulted in gene inactivation. Unique genetic elements that were common between host-adapted phage types were not found. This study advanced our understanding on the evolution and adaptation of Typhimurium at genomic level.

Highlights

  • Salmonella enterica serovar Typhimurium is the most common serovar in both human infections and farm animals in Australia and many other countries

  • This phage type contributes to approximately 15% of Typhimurium infections in Australia [5]

  • A DT135a strain was selected over DT135 since it has been increasing in frequency in recent years in Australia

Read more

Summary

Introduction

Salmonella enterica serovar Typhimurium (or Typhimurium) is the most common serovar in both human infections and farm animals in Australia and many other countries. The Anderson phage typing scheme [1], in which Typhimurium is divided into subtypes based on phenotypic variation, resulted from the susceptibility or resistance to a set of bacteriophages, has been used for epidemiological typing for the past 40 years. In Australia, three phage types were found to be predominantly isolated from human infections as well as in animals based on surveillance data from 1996 to 2011 [5]. DT135 has been most prevalent, causing 20-27% of Typhimurium infections in the past 10 years, and is clearly established in Australia as an endemic phage type infecting humans. DT170/108 has been increasing steadily over recent years and became the most frequent phage type in 2004, surpassing DT135 [5]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call