Abstract

BackgroundHypsizygus marmoreus (Beech mushroom) is a popular ingredient in Asian cuisine. The medicinal effects of its bioactive compounds such as hypsin and hypsiziprenol have been reported, but the genetic basis or biosynthesis of these components is unknown.ResultsIn this study, we sequenced a reference strain of H. marmoreus (Haemi 51,987–8). We evaluated various assembly strategies, and as a result the Allpaths and PBJelly produced the best assembly. The resulting genome was 42.7 Mbp in length and annotated with 16,627 gene models. A putative gene (Hypma_04324) encoding the antifungal and antiproliferative hypsin protein with 75% sequence identity with the previously known N-terminal sequence was identified. Carbohydrate active enzyme analysis displayed the typical feature of white-rot fungi where auxiliary activity and carbohydrate-binding modules were enriched. The genome annotation revealed four terpene synthase genes responsible for terpenoid biosynthesis. From the gene tree analysis, we identified that terpene synthase genes can be classified into six clades. Four terpene synthase genes of H. marmoreus belonged to four different groups that implies they may be involved in the synthesis of different structures of terpenes. A terpene synthase gene cluster was well-conserved in Agaricomycetes genomes, which contained known biosynthesis and regulatory genes.ConclusionsGenome sequence analysis of this mushroom led to the discovery of the hypsin gene. Comparative genome analysis revealed the conserved gene cluster for terpenoid biosynthesis in the genome. These discoveries will further our understanding of the biosynthesis of medicinal bioactive molecules in this edible mushroom.

Highlights

  • Hypsizygus marmoreus (Beech mushroom) is a popular ingredient in Asian cuisine

  • Several bioactive molecules have been reported to underlie the medicinal effects of H. marmoreus; in particular, the terpenoid compound hypsiziprenol A9 inhibits cell cycle progression in HepG2 cells, a human liver cancer cell line [2]

  • Potential terpene synthase genes in Coprinus cinereus [8], Omphalotus olearius [9], and Stereum hirsutum [10] have been mined via genome sequencing, and their biochemical activities have been studied

Read more

Summary

Introduction

Hypsizygus marmoreus (Beech mushroom) is a popular ingredient in Asian cuisine. The medicinal effects of its bioactive compounds such as hypsin and hypsiziprenol have been reported, but the genetic basis or biosynthesis of these components is unknown. It is important to combine molecular, genetic, and biochemical techniques within the genomic context to understand the biosynthesis of natural bioactive compounds Both biochemical compounds and many proteins, such as lectins, fungal immunomodulatory proteins, ribosomeinactivating proteins, ribonucleases, and laccases, have been suggested as candidates for medicinally active components in mushrooms [11]. Examples of ribosome-inactivating proteins expressed in mushrooms include velutin (Flammulina velutipes) [12], flammulin (F. velutipes) [13], and lyophyllin (Lyophyllum shimeji) [14]. Genes encoding these proteins have not yet been explored despite the availability of genome sequences for these species [15, 16]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call