Abstract
BackgroundAllopatric speciation has played a particularly important role in archipelagic settings where populations evolve in isolation after colonizing different islands. The Indo-Australasian island realm is an unparalleled natural laboratory of biotic diversification. Here we explore how the level of earth-historic isolation has influenced genetic differentiation across the region by investigating phylogeographic patterns in the Pitta sordida species complex.ResultsWe generated a de novo genome and compared population genomics of 29 individuals of Pitta sordida from the entire distributional range and we reconstructed phylogenetic relationship using mitogenomes, a multi-nuclear gene dataset and single nucleotide polymorphisms (SNPs). We found deep divergence between an eastern and a western group of taxa across Indo-Australasia. Within both groups we have identified major lineages that are geographically separated into Philippines, Borneo, western Sundaland, and New Guinea, respectively. Although these lineages are genetically well-differentiated, suggesting a long-term isolation, there are signatures of extensive gene flow within each lineage throughout the Pleistocene, despite the wide geographic range occupied by some of them. We found little evidence of hybridization or introgression among the studied taxa, but forsteni from Sulawesi makes an exception. This individual, belonging to the eastern clade, is genetically admixed between the western and eastern clades. Geographically this makes sense as Sulawesi is not far from Borneo that houses a population of hooded pittas that belongs to the western clade.ConclusionsWe found that geological vicariance events cannot explain the current genetic differentiation in the Pitta sordida species complex. Instead, the glacial-interglacial cycles may have played a major role therein. During glacials the sea level could be up to 120 m lower than today and land bridges formed within both the Sunda Shelf and the Sahul Shelf permitting dispersal of floral and faunal elements. The geographic distribution of hooded pittas shows the importance of overwater, “stepping-stone” dispersals not only to deep-sea islands, but also from one shelf to the other. The most parsimonious hypothesis is an Asian ancestral home of the Pitta sordida species complex and a colonization from west to east, probably via Wallacea.
Highlights
Allopatric speciation has played a important role in archipelagic settings where populations evolve in isolation after colonizing different islands
It can be postulated that a geographically widespread organism in this region will exhibit a phylogeographic pattern resulting from a mix of geological vicariance events, gene flow following secondary contact of previously isolated populations during periods of low sea levels, and incomplete lineage sorting in populations established by recent dispersal
The data sets possess varying properties and were subjected to a range of different analytical methods
Summary
Allopatric speciation has played a important role in archipelagic settings where populations evolve in isolation after colonizing different islands. Allopatric speciation, referred to as vicariant speciation, appears to be the by far most common mode of speciation [1] and has played a important role in archipelagic settings where populations evolve in isolation after colonizing different islands [2,3,4]. During ensuing glaciations sea levels have repeatedly fallen, sometimes by more than 120 m [5], facilitating contact and exchange of individuals. These oscillations have affected only populations on islands that are part of shelf areas. Studying an organism distributed across the Indo-Australasian island realm, with its complex earth-historic and climatic history, can shed light on how these factors have influenced current genetic diversity
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.