Abstract

Although ductal carcinoma in situ (DCIS) precedes invasive ductal carcinoma (IDC), the related genomic alterations remain unknown. To identify the genomic landscape of DCIS and better understand the mechanisms behind progression to IDC, we performed whole-exome sequencing and copy number profiling for six cases of pure DCIS and five pairs of synchronous DCIS and IDC. Pure DCIS harbored well-known mutations (e.g., TP53, PIK3CA and AKT1), copy number alterations (CNAs) and chromothripses, but had significantly fewer driver genes and co-occurrence of mutation/CNAs than synchronous DCIS-IDC. We found neither recurrent nor significantly mutated genes with synchronous DCIS-IDC compared to pure DCIS, indicating that there may not be a single determinant for pure DCIS progression to IDC. Of note, synchronous DCIS genomes were closer to IDC than pure DCIS. Among the clinicopathologic parameters, progesterone receptor (PR)-negative status was associated with increased mutations, CNAs, co-occurrence of mutations/CNAs and driver mutations. Our results indicate that although pure DCIS has already acquired some drivers, more changes are needed to progress to IDC. In addition, IDC-associated DCIS is more aggressive than pure DCIS at genomic level and should really be considered IDC. Finally, the data suggest that PR-negativity could be used to predict aggressive breast cancer genotypes.

Highlights

  • Breast cancer, a leading cause of cancer-related deaths in women worldwide, represents a genomic disorder in which various types of genomic alterations contribute to initiation and progression of the disease [1]

  • We found neither recurrent nor significantly mutated genes with synchronous ductal carcinoma in situ (DCIS)-invasive ductal carcinoma (IDC) compared to pure DCIS, indicating that there may not be a single determinant for pure DCIS progression to IDC

  • None of the mutation numbers, subtypes or spectra was significantly different between the three groups (Figure S1A–S1D, Table S2), but we observed a trend towards synchronous DCIS and IDC harboring more mutations than pure DCIS (p = 0.065)

Read more

Summary

Introduction

A leading cause of cancer-related deaths in women worldwide, represents a genomic disorder in which various types of genomic alterations contribute to initiation and progression of the disease [1]. The most common type of breast cancer, is largely divided into invasive (invasive ductal carcinoma, IDC) and non-invasive (mainly ductal carcinoma in situ, DCIS) tumors. DCIS and IDC share gene expression profiles and copy www.impactjournals.com/oncotarget number alterations (CNAs) in common [4, 5]. DCIS and matched adjacent IDC (synchronous DCIS and IDC) have remarkably similar copy number profile [6]. CNAs of synchronous DCIS with IDC are closer to IDC than pure DCIS without IDC [7]. These findings suggest that IDCs might develop through genetic evolution from DCIS

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call