Abstract

BackgroundAutosomal dominant optic atrophy (ADOA, Kjer disease, MIM #165500) is the most common form of hereditary optic neuropathy. Mutations in OPA1 located at chromosome 3q28 are the predominant cause for ADOA explaining between 32 and 89% of cases. Although deletions of OPA1 were recently reported in ADOA, the frequency of OPA1 genomic rearrangements in Denmark, where ADOA has a high prevalence, is unknown. The aim of the study was to identify copy number variations in OPA1 in Danish ADOA patients.MethodsForty unrelated ADOA patients, selected from a group of 100 ADOA patients as being negative for OPA1 point mutations, were tested for genomic rearrangements in OPA1 by multiplex ligation probe amplification (MLPA). When only one probe was abnormal results were confirmed by additional manually added probes. Segregation analysis was performed in families with detected mutations when possible.ResultsTen families had OPA1 deletions, including two with deletions of the entire coding region and eight with intragenic deletions. Segregation analysis was possible in five families, and showed that the deletions segregated with the disease.ConclusionDeletions in the OPA1 gene were found in 10 patients presenting with phenotypic autosomal dominant optic neuropathy. Genetic testing for deletions in OPA1 should be offered for patients with clinically diagnosed ADOA and no OPA1 mutations detected by DNA sequencing analysis.

Highlights

  • Autosomal dominant optic atrophy (ADOA, Kjer disease, MIM #165500) is the most common form of hereditary optic neuropathy

  • We investigated 40 index patients diagnosed on clinical grounds with ADOA who had previously been found negative for mutations in OPA1 by DNA sequence analysis

  • DNA from these 40 index patients was analyzed for genomic rearrangements in OPA1 using multiplex ligation probe amplification (MLPA)

Read more

Summary

Introduction

Autosomal dominant optic atrophy (ADOA, Kjer disease, MIM #165500) is the most common form of hereditary optic neuropathy. Mutations in OPA1 located at chromosome 3q28 are the predominant cause for ADOA explaining between 32 and 89% of cases. Autosomal dominant optic atrophy (ADOA) is the most common hereditary optic neuropathy. Kjer’s optic atrophy or optic atrophy 1 (MIM #165500) [4], the ADOA originally described by Kjer, is caused by mutations in OPA1 (chromosome 3q28-q29). A specific frameshift mutation in exon 28 is common in Denmark with evidence for a Genomic deletions or duplications have been found to account for various genetic disorders [19,20,21]. Fuhrmann et al have shown that genomic aberrations may explain up to 12.9% of cases of Kjer-type ADOA [23]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.