Abstract

Tobacco seedlings (Nicotiana tabacum L cv. Wisconsin 38) were treated for 24 h with colloidal solution of silver and gold nanoparticles (AgNPs and AuNPs) of different size or cultivated for 8 weeks on soil polluted with these NPs. DNA damage in leaf and roots nuclei was evaluated by the comet assay. AgNPs of the size 22–25 nm at concentrations higher than 50 mg·L−1 significantly increased the tail moments (TM) values in leaf nuclei compared to the negative control. Ag nanoparticles of smaller size 12–15 nm caused a slight increase in tail moment without significant difference from the negative control. The opposite effect of AgNPs was observed on roots. The increasing tail moment was registered for smaller NPs. Similar results were observed for AuNPs at a concentration of 100 mg·L−1. DNA damaging effects after growing tobacco plants for 8 weeks in soil polluted with AgNPs and AuNPs of different size and concentrations were observed. While lower concentrations of both types of particles had no effect on the integrity of DNA, concentration of 30 mg·kg−1 of AgNPs caused significant DNA damage in leaves of tobacco plants. AuNPs had no effect even at the highest concentration. The content of Ag was determined by ICP–MS in above-ground part of plants (leaves) after 8 weeks of growth in soil with 30 mg·kg−1. AgNPs and was 2.720 ± 0.408 µg·g−1. Long term effect is much less harmful probably due to the plant restoration capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.