Abstract

Three genera of Triticeae, Elymus, Stenostachys and Australopyrum, are described in the New Zealand flora. Cytological analyses suggested that five basic genomes (St, H, Y, P and W) donated by different diploid species in different combinations exist in the genera Elymus and Stenostachys, whereas Australopyrum species contain the W genome only. Morphological and cytogenetic data suggested that the genome constitution for both E. apricus and E. multiflorus is StYW. Chloroplast DNA and ITS data supported the genome constitution of these Elymus species, but the HW genome constitution was assigned to the Stenostachys species. In this study, sequences of two single copy nuclear genes, RPB2 and DMC1, were used to confirm or refute the genome constitutions of the two Stenostachys species and the two Elymus species from New Zealand, and to analyse their phylogenetic relationships with other Elymus species. Our RPB2 and DMC1 data confirmed that the genome constitution of hexaploid E. apricus is StWY, and tetraploid S. gracilis is HW. The presence of the StW genome in hexaploid E. multiflorus, and the W genome in tetraploid S. laevis is also confirmed. No obvious St genome differentiation between New Zealand and non-New Zealand species is observed. The H genomes in the S. gracilis and S. laevis are closely related to the H genome from North American species, indicating that the H genomes in these two New Zealand species might originate from North American Hordeum species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call