Abstract
BackgroundTrypanosoma conorhini and Trypanosoma rangeli, like Trypanosoma cruzi, are kinetoplastid protist parasites of mammals displaying divergent hosts, geographic ranges and lifestyles. Largely nonpathogenic T. rangeli and T. conorhini represent clades that are phylogenetically closely related to the T. cruzi and T. cruzi-like taxa and provide insights into the evolution of pathogenicity in those parasites. T. rangeli, like T. cruzi is endemic in many Latin American countries, whereas T. conorhini is tropicopolitan. T. rangeli and T. conorhini are exclusively extracellular, while T. cruzi has an intracellular stage in the mammalian host.ResultsHere we provide the first comprehensive sequence analysis of T. rangeli AM80 and T. conorhini 025E, and provide a comparison of their genomes to those of T. cruzi G and T. cruzi CL, respectively members of T. cruzi lineages TcI and TcVI. We report de novo assembled genome sequences of the low-virulent T. cruzi G, T. rangeli AM80, and T. conorhini 025E ranging from ~ 21–25 Mbp, with ~ 10,000 to 13,000 genes, and for the highly virulent and hybrid T. cruzi CL we present a ~ 65 Mbp in-house assembled haplotyped genome with ~ 12,500 genes per haplotype. Single copy orthologs of the two T. cruzi strains exhibited ~ 97% amino acid identity, and ~ 78% identity to proteins of T. rangeli or T. conorhini. Proteins of the latter two organisms exhibited ~ 84% identity. T. cruzi CL exhibited the highest heterozygosity. T. rangeli and T. conorhini displayed greater metabolic capabilities for utilization of complex carbohydrates, and contained fewer retrotransposons and multigene family copies, i.e. trans-sialidases, mucins, DGF-1, and MASP, compared to T. cruzi.ConclusionsOur analyses of the T. rangeli and T. conorhini genomes closely reflected their phylogenetic proximity to the T. cruzi clade, and were largely consistent with their divergent life cycles. Our results provide a greater context for understanding the life cycles, host range expansion, immunity evasion, and pathogenesis of these trypanosomatids.
Highlights
Trypanosoma conorhini and Trypanosoma rangeli, like Trypanosoma cruzi, are kinetoplastid protist parasites of mammals displaying divergent hosts, geographic ranges and lifestyles
Genome assemblies and molecular karyotypes Molecular karyotypes Pulsed Field Gel Electrophoresis (PFGE) under multiple conditions provided an estimate of the sizes and numbers of chromosomes in the genomes of T. conorhini 025E, T. rangeli AM80, T. cruzi G, T. cruzi CL, and an additional isolate, T. conorhini 30028, obtained from American Type Culture Collection (ATCC) (Fig. 1, Table 1, and Additional file 1: Table S2)
Conclusions we showed that genomes of T. rangeli AM80, T. conorhini 025E and T. cruzi strains G and CL, range from ~ 30–70 Mbp and contain between 10,000 and 13,000 genes
Summary
Trypanosoma conorhini and Trypanosoma rangeli, like Trypanosoma cruzi, are kinetoplastid protist parasites of mammals displaying divergent hosts, geographic ranges and lifestyles. Trypanosoma cruzi is obligately parasitic, exhibits a broad mammalian host range, and is believed to have first infected and caused Chagas Disease in humans when the New World was populated ~ 15,000 years ago [3]. Spread by fecal contamination from an infected reduviid bug, the parasite replicates as intracellular amastigotes in a broad array of cell-types in its mammalian hosts [4]. It replicates as epimastigotes in the gut of its insect vectors, i.e. hemipterans of Triatominae such as species of the Rhodnius, Triatoma and Panstrongylus genera [5]. It is generally believed that T. cruzi is a recent descendant of a phylogenetic lineage of closely related species of Trypanosoma tightly linked to bats [12, 13]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.