Abstract

A new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) associated with human to human transmission and extreme human sickness has been as of late announced from the city of Wuhan in China. Our objectives were to mutation analysis between recently reported genomes at various times and locations and to characterize the genomic structure of SARS-CoV-2 using bioinformatics programs. Information on the variation of viruses is of considerable medical and biological impacts on the prevention, diagnosis, and therapy of infectious diseases. To understand the genomic structure and variations of the SARS-CoV-2. The study analyzed 95 SARS-CoV-2 complete genome sequences available in GenBank, National MicrobiologyData Center (NMDC) and NGDC Genome Warehouse from December-2019 until 05 of April-2020. The genomic signature analysis demonstrates that a strong association between the time of sample collection, location of sample and accumulation of genetic diversity. We found 116 mutations, the three most common mutations were 8782C>T in ORF1ab gene, 28144T>C in ORF8 gene and 29095C>T in the N gene. The mutations might affect the severity and spread of the SARS-CoV-2. The finding heavily supports an intense requirement for additional prompt, inclusive investigations that combine genomic detail, epidemiological information and graph records of the clinical features of patients with COVID-19.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.