Abstract

Accompanied with the appearance and prevalence of the new K28E32 variant among men who have sex with men, HIV-1 circulating recombinant form 07_BC (CRF07_BC) was becoming the most predominant subtype circulating in China. The K28E32 variant with five specific mutations in reverse transcriptase coding region appears to have significantly higher in vitro HIV-1 replication ability than the wild-type strain. In this study, we characterized the special mutations/substitutions in the K28E32 variant at the genomic level. Ten specific mutations that rarely appeared in other six main HIV-1 subtypes/CRFs (A-D, CRF01_AE, and CRF02_AG) were identified in the coding genes/regions of the K28E32 variant, including S77L and a novel seven-amino acid detection (32DKELYPL38) (p6Δ7) in p6, I135L in integrase, T189S in Vif, H/Y15L/F in Vpr, I264V/A and LV/LI328-329VG in gp41, and H82C and S97P in Rev. The special locations of the novel p6Δ7, and gp41 mutations I264V/A and LV/LI328-329VG in crucial protein functional domains suggest that these mutations might be functionally important to the K28E32 variant. Furthermore, eight specific substitutions were identified in Rev responsive element (RRE) of the K28E32 variant, and were revealed to increase the stability of RRE structure with a lower minimum free energy. Whether these mutations/substitutions contribute to improved transmissibility of the CRF07_BC K28E32 variant needs to be further confirmed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call