Abstract

ObjectiveFollowing the construction of a bacterial pan-genome from the whole genome sequences on a web-based pipeline, all coding DNA sequences (CDSs) can be clustered into pan-genome orthologous groups (POGs), which is a similar approach to comparative genome hybridization on glass microscope slides. We aimed to clarify the genomic characteristics of Streptococcus agalactiae based on the POG analysis. MethodsSixty-six S. agalactiae isolates obtained from invasive specimens (blood and cerebrospinal fluid) and non-invasive specimens (urine and vaginal discharge) between 2010 and 2017 in Korea were subjected to whole genome sequencing (WGS). Based on the WGS data, we conducted the POG analysis and constructed a phylogenetic tree along with capsular polysaccharide (CPS) genotyping. We compared the genomics of invasive vs. non-invasive isolates, as well as CPS III vs. non-CPS III genotypes. ResultsPredicted pan- and core-genome sizes were 3416 and 1658 genes, respectively. We found four clusters consisting of CPS genotypes (III, VIII, Ib/VI, and Ia) in the phylogenetic tree. There were significant differences in two metabolic pathways specific to invasiveness, and in six metabolic pathways specific to CPS III type produced by CDSs. ConclusionOur observations reveal the pan- and core-genome sizes, four clusters of genomes distributed by CPS genotypes, and unique CDS features of S. agalactiae by comparative genomics in terms of invasiveness and CPS genotype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call