Abstract

For monitoring minimal residual disease (MRD) in chronic myeloid leukemia (CML) the most recommended method is quantitative RT-PCR (RT-qPCR) for measuring BCR-ABL1 transcripts. Several studies reported that a DNA-based assay enhances the sensitivity of detection of the BCR-ABL1 genomic rearrangement, even if its characterization results difficult. We developed a DNA-based method for detecting and quantifying residual BCR-ABL1 positive leukemic stem cells in CML patients. We propose two alternative approaches: the first one is a fluorescence in situ hybridization (FISH)-based step followed by Sanger sequencing; the second one employs MinION, a single molecule sequencer based on nanopore technology. Finally, after defining the BCR-ABL1 genomic junction, we performed the target CML patient–specific quantification, using droplet digital PCR (ddPCR). FISH and MinION steps, respectively, together with ddPCR analysis, greatly reduce the complexity that has impeded the use of “personalized monitoring” of CML in clinical practice. Our report suggests a feasible pipeline, in terms of costs and reproducibility, aimed at characterizing and quantifying the genomic BCR-ABL1 rearrangement during MRD monitoring in CML patients.

Highlights

  • For monitoring minimal residual disease (MRD) in chronic myeloid leukemia (CML) the most recommended method is quantitative RT-PCR (RT-qPCR) for measuring BCR-ABL1 transcripts [1]

  • We propose two alternative approaches: the first one is a fluorescence in situ hybridization (FISH)-based step followed by Sanger sequencing; the second one employs MinION, a single molecule sequencer based on nanopore technology

  • The first issue has been overcome by generation sequencing (NGS) analysis, but this technology is still very expensive and not yet within the reach of all laboratories; the second issue can be overcome by the use of a digital PCR platform, which provides absolute molecular quantification without the need for a standard curve. In light of these considerations we developed a DNA-based method for detecting and quantifying BCR-ABL1+ cells in CML patients that can be adopted by laboratories that do not have the resources available to invest in the main NGS platforms currently available on the market

Read more

Summary

Introduction

For monitoring minimal residual disease (MRD) in chronic myeloid leukemia (CML) the most recommended method is quantitative RT-PCR (RT-qPCR) for measuring BCR-ABL1 transcripts [1]. Several studies reported that a DNA-based assay enhances the sensitivity of detection of the BCR-ABL1 rearrangement [4,5,6,7,8]. All these studies demonstrated that using the DNA sequence spanning the BCR and ABL1 gene breakpoints as the target for CML monitoring has several advantages: genomic DNA is more stable, the BCR-ABL1+ cell number is directly measured, and laboratory standardization is simpler. An improved sensitivity of a DNA-based qPCR approach compared to that of an RNA-based assay has been reported, increasing the limit of detection up to 10–7 [6]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.