Abstract

Efficient de novo motif discovery from the results of wide-genome mapping of transcription factor binding sites (ChIP-seq) is dependent on the choice of background nucleotide sequences. The foreground sequences (ChIP-seq peaks) represent not only specific motifs of target transcription factors, but also the motifs overrepresented throughout the genome, such as simple sequence repeats. We performed a massive comparison of the 'synthetic' and 'genomic' approaches to generate background sequences for de novo motif discovery. The 'synthetic' approach shuffled nucleotides in peaks, while in the 'genomic' approach selected sequences from the reference genome randomly or only from gene promoters according to the fraction of A/T nucleotides in each sequence. We compiled the benchmark collections of ChIP-seq datasets for mouse, human and Arabidopsis, and performed de novo motif discovery. We showed that the genomic approach has both more robust detection of the known motifs of target transcription factors and more stringent exclusion of the simple sequence repeats as possible non-specific motifs. The advantage of the genomic approach over the synthetic approach was greater in plants compared to mammals. We developed the AntiNoise web service (https://denovosea.icgbio.ru/antinoise/) that implements a genomic approach to extract genomic background sequences for twelve eukaryotic genomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.