Abstract

Differential gene expression is the fundamental mechanism underlying animal development and cell differentiation. However, it is a challenge to identify comprehensively and accurately the DNA sequences that are required to regulate gene expression: namely, cis-regulatory modules (CRMs). Three major features, either singly or in combination, are used to predict CRMs: clusters of transcription factor binding site motifs, non-coding DNA that is under evolutionary constraint and biochemical marks associated with CRMs, such as histone modifications and protein occupancy. The validation rates for predictions indicate that identifying diagnostic biochemical marks is the most reliable method, and understanding is enhanced by the analysis of motifs and conservation patterns within those predicted CRMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.