Abstract
Fruit quality is determined by numerous genetic traits that affect taste, aroma, texture, pigmentation, nutritional value and duration of shelf-life. The molecular basis of many of these important traits is poorly understood and it’s understanding offers an excellent opportunity for adding value to agricultural products. Improvement of melon fruit quality was the primary goal of the project. The original objectives of the project were: The isolation of a minimum of 1000 fruit specific ESTs. The development of a microarray of melon fruit ESTs. The analysis of gene expression in melon using melon and tomato fruit enriched microarrays. A comprehensive study of fruit gene expression of the major cucurbit crops. In our current project we have focused on the development of genomics tools for the enhancement of melon research with an emphasis on fruit, specifically the first public melon EST collection. We have also developed a database to relay this information to the research community and developed a publicly available microarray. The release of this information was one of the catalysts for the establishment of the International Cucurbit Genomic Initiative (ICuGI, Barcelona, Spain, July 2005) aimed at collecting and generating up to 100,000 melon EST sequences in 2006, leveraging a significant expansion of melon genomic resources. A total of 1000 ESTs were promised under the original proposal (Objective 1). Non-subtracted mature fruit and young fruit flesh of a climacteric variety in addition to a non-climacteric variety resulted in the majority of additional EST sequences for a total of 4800 attempted reads. 3731 high quality sequences from independent ESTs were assembled, representing 2,467 melon unigenes (1,873 singletons, 594 contigs). In comparison, as of June 2004, a total of 170 melon mRNA sequences had been deposited in GENBANK. The current project has thus resulted in nearly five- fold the number of ESTs promised and ca. 15-fold increase in the depth of publicly available melon gene sequences. All of these sequences have been deposited in GENBANK and are also available and searchable via multiple approaches in the public database (http://melon.bti.cornell.edu). Our database was selected as the central location for presentation of public melon EST data of the International Cucurbit Genomic Initiative. With the available unigenes we recently constructed a microarray, which was successfully applied in hybridizations (planned public release by August 2006). Current gene expression analyses focus on fruit development and on comparative studies between climacteric and non-climacteric melons. Earlier, expression profiling was conducted using macroarrays developed at the preliminary stage of the project. This analysis replaced the study of tomato microarray following the recommendations of the reviewers and the panel of the original project. Comparative study between melon and other cucurbit crops have begun, mainly with watermelon, in collaboration with Dr. Amnon Levi (USDA-ARS). In conclusion, all four objectives have been addressed and achieved. In the continuation project that have been approved we plan to apply the genomic tools developed here to achieve detailed functional analyses of genes associated with major metabolic pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.