Abstract

Antarctic subice environments are diverse, underexplored microbial habitats. Here, we describe the ecophysiology and annotated genome of a Marinobacter strain isolated from a cold, saline, iron-rich subglacial outflow of the Taylor Glacier, Antarctica. This strain (BF04_CF4) grows fastest at neutral pH (range 6-10), is psychrophilic (range: 0°C-20°C), moderately halophilic (range: 0.8%-15% NaCl) and hosts genes encoding potential low temperature and high salt adaptations. The predicted proteome suggests it utilizes fewer charged amino acids than a mesophilic Marinobacter strain. BF04_CF4 has increased concentrations of membrane unsaturated fatty acids including palmitoleic (33%) and oleic (27.5%) acids that may help maintain cell membrane fluidity at low temperatures. The genome encodes proteins for compatible solute biosynthesis and transport, which are known to be important for growth in saline environments. Physiological verification of predicted metabolic functions demonstrate BF04_CF4 is capable of denitrification and may facilitate iron oxidation. Our data indicate that strain BF04_CF4 represents a new Marinobacter species, Marinobacter gelidimuriae sp. nov., that appears well suited for the subglacial environment it was isolated from. Marinobacter species have been isolated from other cold, saline environments in the McMurdo Dry Valleys and permanently cold environments globally suggesting that this lineage is cosmopolitan and ecologically relevant in icy brines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call