Abstract

Retinoic acid (RA) is the active metabolite of vitamin A and essential for many physiological processes, particularly the induction of cell differentiation. In addition to regulating genomic transcriptional activity via RA receptors (RARs) and retinoid X receptors (RXRs), non-genomic mechanisms of RA have been described, including the regulation of ERK1/2 kinase phosphorylation, but are poorly characterised. In this study, we test the hypothesis that genomic and non-genomic mechanisms of RA are regulated independently with respect to the involvement of ligand-dependent RA receptors. A panel of 28 retinoids (compounds with vitamin A-like activity) showed a marked disparity in genomic (gene expression) versus non-genomic (ERK1/2 phosphorylation) assays. These results demonstrate that the capacity of a compound to activate gene transcription does not necessarily correlate with its ability to regulate a non-genomic activity such as ERK 1/2 phosphorylation. Furthermore, a neurite outgrowth assay indicated that retinoids that could only induce either genomic, or non-genomic activities, were not strong promoters of neurite outgrowth, and that activities with respect to both transcriptional regulation and ERK1/2 phosphorylation produced maximum neurite outgrowth. These results suggest that the development of effective retinoids for clinical use will depend on the selection of compounds which have maximal activity in non-genomic as well as genomic assays.

Highlights

  • Retinoids are a family of natural or synthetic compounds that are analogues of vitamin A and its derivatives [1]

  • Genomic activity of retinoids To quantify genomic activity, the Sil-15 Retinoic acid (RA) reporter cell line, in which X-gal expression is driven by a RARβ RARE, was used to assay retinoids at concentrations ranging from 10− 6 M to 10− 14

  • EC23Al showed a significantly higher Emax while the EC50 was greater compared to All-trans-retinoic acid (ATRA)

Read more

Summary

Introduction

Retinoids are a family of natural or synthetic compounds that are analogues of vitamin A and its derivatives [1]. We test the hypothesis that genomic and non-genomic activities of retinoids are regulated independently using a diverse range of commercially-available, and novel RAR and RXR ligands for several of the different classes of RA receptors (RARα/β/γ, RXRα/β/γ) or ligands for RBP4. The properties of these ligands were compared with respect to activity in genomic (gene expression) assays and a non-genomic (ERK1/2 phosphorylation) assay, and their ability to induce neurite outgrowth

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call