Abstract

Mitochondrial trifunctional protein (TP), an enzyme of beta-oxidation, is a multienzyme complex composed of four molecules of the alpha-subunit (HADHA) containing the enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase domains and four molecules of the beta-subunit (HADHB) containing the 3-ketoacyl-CoA thiolase domain. An inborn error of this enzyme complex can cause sudden infant death syndrome, acute hepatic encephalopathy or liver failure, skeletal myopathy, or hypertrophic cardiomyopathy. TP deficiency is classified into two different biochemical phenotypes: one represents the existence of both subunits and the lack of only the 3-hydroxyacyl-CoA dehydrogenase activity and the other represents the absence of both subunits and the lack of all three TP activities, although their clinical features are similar. We have identified two Japanese patients with this disorder. Three enzyme activities of TP were undetectable in fibroblasts from these two patients. We detected two mutations in the HADHB gene from two Japanese patients, an exonic single T insertion which created a new cryptic 5' splice site and a G1331A transition (R411 K). Patient 1 was a compound heterozygote, while patient 2 was a homozygote of a G1331A transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.