Abstract

During the last decade miltefosine (MIL) has been used as first-line treatment for visceral leishmaniasis in endemic areas with antimonial resistance, but a decline in clinical effectiveness is now being reported. While only two MIL-resistant Leishmania infantum strains from HIV co-infected patients have been documented, phenotypic MIL-resistance for L. donovani has not yet been identified in the laboratory. Hence, a better understanding of the factors contributing to increased MIL-treatment failure is necessary. Given the paucity of defined MIL-resistant L. donovani clinical isolates, this study used an experimental amastigote-selected MIL-resistant L. infantum isolate (LEM3323). In-depth exploration of the MIL-resistant phenotype was performed by coupling genomic with phenotypic data to gain insight into gene function and the mutant phenotype. A naturally MIL-resistant L. infantum clinical isolate (LEM5159) was included to compare both datasets. Phenotypically, resistance was evaluated by determining intracellular amastigote susceptibility in vitro and actual MIL-uptake. Genomic analysis provided supportive evidence that the resistance selection model on intracellular amastigotes can be a good proxy for the in vivo field situation since both resistant strains showed mutations in the same inward transporter system responsible for the acquired MIL-resistant phenotype. In line with previous literature findings in promastigotes, our data confirm a defective import machinery through inactivation of the LiMT/LiRos3 protein complex as the main mechanism for MIL-resistance also in intracellular amastigotes. Whole genome sequencing analysis of LEM3323 revealed a 2 base pair deletion in the LiMT gene that led to the formation an early stop codon and a truncation of the LiMT protein. Interestingly, LEM5159 revealed mutations in both the LiMT and LiRos3 genes, resulting in an aberrant expression of the LiMT protein. To verify that these mutations were indeed accountable for the acquired resistance, transfection experiments were performed to re-establish MIL-susceptibility. In LEM3323, susceptibility was restored upon expression of a LiMT wild-type gene, whereas the MIL-susceptibility of LEM5159 could be reversed after expression of the LiRos3 wild-type gene. The aberrant expression profile of the LiMT protein could be restored upon rescue of the LiRos3 gene both in the LEM5159 clinical isolate and a ΔLiRos3 strain, showing that expression of LdMT is dependent on LdRos3 expression. The present findings clearly corroborate the pivotal role of the LiMT/LiRos3 complex in resistance towards MIL.

Highlights

  • Visceral leishmaniasis (VL) is a tropical protozoan disease caused by Leishmania donovani and L. infantum

  • LEM3323-MIL: from the genome sequence point of view, LEM3323-MIL was rather similar to its WT parent: in total, between the two strains, we found only 40 single nucleotide polymorphisms (SNPs) that passed the quality filters: 7 variants were present within a coding region and passed manual verification in IGV

  • While resistance has mostly been studied in laboratory-selected promastigotes, it should be recognized that focusing such research on the intracellular amastigote stage is definitely more relevant

Read more

Summary

Introduction

Visceral leishmaniasis (VL) is a tropical protozoan disease caused by Leishmania donovani and L. infantum. In Brazil, MIL-treatment of VL by L. infantum revealed a cure rate of only 43% [7]. Its pharmacokinetic properties [8] in addition to the long unsupervised treatment regimen [6,9] put MIL at a considerable risk of selecting drug resistant parasites. While in the Indian subcontinent relapse after MILtreatment could not yet be firmly linked to phenotypic resistance in L. donovani using the standard in vitro susceptibility assays [6,10], a potentially reduced MIL-susceptibility has been demonstrated in Brazilian L. infantum relapse isolates [7]. It is noteworthy that most studies have used exposure of promastigotes to increasing MIL-concentrations, selection of drug resistance on the more clinically relevant intracellular amastigote stage should be considered [13]. A common feature in MIL-resistant promastigotes is a decreased MIL-accumulation that is caused either by a defect in inward transport of MIL through inactivation of the L. donovani putative MIL-transporter (LdMT) [14] and/or its betasubunit LdRos3 [15] or by an increased efflux mediated by the overexpression of ABC-transporter proteins [16]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.