Abstract

BackgroundThe pectinolytic enterobacteria of the Pectobacterium and Dickeya genera are causative agents of maceration-associated diseases affecting a wide variety of crops and ornamentals. For the past decade, the emergence of a novel species D. solani was observed in potato fields in Europe and the Mediterranean basin. The purpose of this study is to search by comparative genomics the genetic traits that could be distinctive to other Dickeya species and be involved in D. solani adaptation to the potato plant host.ResultsD. solani 3337 exhibits a 4.9 Mb circular genome that is characterized by a low content in mobile elements with the identification of only two full length insertion sequences. A genomic comparison with the deeply-annotated model D. dadantii 3937 strain was performed. While a large majority of Dickeya virulence genes are shared by both strains, a few hundreds genes of D. solani 3337, mostly regrouped in 25 genomic regions, are distinctive to D. dadantii 3937. These genomic regions are present in the other available draft genomes of D. solani strains and interestingly some of them were not found in the sequenced genomes of the other Dickeya species. These genomic regions regroup metabolic genes and are often accompanied by genes involved in transport systems. A metabolic analysis correlated some metabolic genes with distinctive functional traits of both D. solani 3337 and D. dadantii 3937. Three identified D. solani genomic regions also regroup NRPS/PKS encoding genes. In addition, D. solani encodes a distinctive arsenal of T5SS and T6SS-related toxin-antitoxin systems. These genes may contribute to bacteria-bacteria interactions and to the fitness of D. solani to the plant environment.ConclusionsThis study highlights the genomic specific traits of the emerging pathogen D. solani and will provide the basis for studying those that are involved in the successful adaptation of this emerging pathogen to the potato plant host.

Highlights

  • The pectinolytic enterobacteria of the Pectobacterium and Dickeya genera are causative agents of macerationassociated diseases affecting a wide variety of crops and ornamentals [1]

  • Even if only a few genetic markers were analysed in several D. solani isolates from different countries, their high similarities suggested a clonal origin of D. solani populations affecting the potato plant host [4,5,6,8]

  • We reported a genomic and metabolic comparison of the D. solani strain 3337 and D. dadantii strain 3937

Read more

Summary

Introduction

The pectinolytic enterobacteria of the Pectobacterium and Dickeya genera are causative agents of maceration-associated diseases affecting a wide variety of crops and ornamentals. The purpose of this study is to search by comparative genomics the genetic traits that could be distinctive to other Dickeya species and be involved in D. solani adaptation to the potato plant host. The pectinolytic enterobacteria of the Pectobacterium and Dickeya genera are causative agents of macerationassociated diseases affecting a wide variety of crops and ornamentals [1]. Even if only a few genetic markers were analysed in several D. solani isolates from different countries, their high similarities suggested a clonal origin of D. solani populations affecting the potato plant host [4,5,6,8]. The genes and functions involved in these traits are still unknown

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call