Abstract

Serpentinization is a process whereby water interacts with reduced mantle rock called peridotite to produce a new suite of minerals (e.g., serpentine), a highly alkaline fluid, and hydrogen. In previous reports, we identified abundance of microbes of the candidate phylum NPL-UPA2 in a serpentinization site called The Cedars. Here, we report the first metagenome assembled genome (MAG) of the candidate phylum as well as the in-situ gene expression. The MAG of the phylum NPL-UPA2, named Unc8, is only about 1 Mbp and its biosynthetic properties suggest it should be capable of independent growth. In keeping with the highly reducing niche of Unc8, its genome encodes none of the known oxidative stress response genes including superoxide dismutases. With regard to energy metabolism, the MAG of Unc8 encodes all enzymes for Wood-Ljungdahl acetogenesis pathway, a ferredoxin:NAD+ oxidoreductase (Rnf) and electron carriers for flavin-based electron bifurcation (Etf, Hdr). Furthermore, the transcriptome of Unc8 in the waters of The Cedars showed enhanced levels of gene expression in the key enzymes of the Wood-Ljungdahl pathway [e.g., Carbon monoxide dehydrogenase /Acetyl-CoA synthase complex (CODH/ACS), Rnf, Acetyl-CoA synthetase (Acd)], which indicated that the Unc8 is an acetogen. However, the MAG of Unc8 encoded no well-known hydrogenase genes, suggesting that the energy metabolism of Unc8 might be focused on CO as the carbon and energy sources for the acetate formation. Given that CO could be supplied via abiotic reaction associated with deep subsurface serpentinization, while available CO2 would be at extremely low concentrations in this high pH environment, CO-associated metabolism could provide advantageous approach. The CODH/ACS in Unc8 is a Bacteria/Archaea hybrid type of six-subunit complex and the electron carriers, Etf and Hdr, showed the highest similarity to those in Archaea, suggesting that archaeal methanogenic energy metabolism was incorporated into the bacterial acetogenesis in NPL-UPA2. Given that serpentinization systems are viewed as potential habitats for early life, and that acetogenesis via the Wood-Ljungdahl pathway is proposed as an energy metabolism of Last Universal Common Ancestor, a phylogenetically distinct acetogen from an early earth analog site may provide important insights in primordial lithotrophs and their habitat.

Highlights

  • It is an honor to take part in this issue reminding us of the many accomplishments of Professor Koki Horikoshi in the world of alkaliphiles (Horikoshi, 1971, 1996, 1999; Kudo, 2016)

  • The metagenome assembled genome (MAG) of the bacteria was recovered from The Cedars, an ancient and widespread environment called a serpentinization site (Schulte et al, 2006; Sleep et al, 2011; Sleep, 2018), where highly alkaline anoxic strongly reducing water (Eh = −900 to −500 mV) is produced by geological processes (Morrill et al, 2013; Schrenk et al, 2013; Suzuki et al, 2017)

  • Having environmentally relevant microbes in culture is beneficial for microbiology; genomic, transcriptomic and proteomic analyses, when coupled to physiological data can reveal how microorganisms interact with their environment and other microorganisms, defining the ecophysiology of the microorganisms and their interactions (Strous et al, 2006; Ettwig et al, 2010; Suzuki et al, 2014; Laso-Perez et al, 2016; McGlynn, 2017; Kato et al, 2018)

Read more

Summary

Introduction

It is an honor to take part in this issue reminding us of the many accomplishments of Professor Koki Horikoshi in the world of alkaliphiles (Horikoshi, 1971, 1996, 1999; Kudo, 2016). While the initial MAG named Unc8 was retrieved from the metagenome of highly alkaline springs at The Cedars serpentinization site in our previous studies (Morrill et al, 2013; Suzuki et al, 2013, 2017), detail of the metabolic capabilities has not been analyzed.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.