Abstract
Aspirin (ASA) is a proven chemoprotective agent for colorectal cancer, though mechanisms underlying these effects are incompletely understood. Human organoids are an ideal system to study genomic and epigenomic host-environment interactions. We use human colonic organoids to profile ASA responses on genome-wide gene expression and chromatin accessibility. Human colonic organoids from one individual were cultured and treated in triplicate with 3 mM ASA or vehicle control (DMSO) for 24 h. Gene expression and chromatin accessibility were measured using RNA- and ATAC-sequencing, respectively. Differentially expressed genes were analyzed using DESeq2. Top genes were validated by qPCR. Gene set enrichment was performed by SetRank. Differentially accessible peaks were analyzed using DiffBind and edgeR. Peak annotation and differential transcription factor motifs were determined by HOMER and diffTF. The results showed robust transcriptional responses to ASA with significant enrichment for fatty acid oxidation and peroxisome proliferator-activated receptor (PPAR) signaling that were validated in independent organoid lines. A large number of differentially accessible chromatin regions were found in response to ASA with significant enrichment for Fos, Jun, and Hnf transcription factor motifs. Integrated analysis of epigenomic and genomic treatment responses highlighted gene regions that could mediate ASA's specific effects in the colon including those involved in chemoprotection and/or toxicity. Assessment of chromatin accessibility and transcriptional responses to ASA yielded new observations about genome-wide effects in the colon facilitated by application of human colonic organoids. This framework can be applied to study colonic ASA responses between individuals and populations in future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.