Abstract
The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Endophytes represent a promising group of organisms, as they are a mostly untapped reservoir of metabolic diversity. They are often able to degrade cellulose, and they can produce an extraordinary diversity of metabolites. The filamentous fungal endophyte Ascocoryne sarcoides was shown to produce potential-biofuel metabolites when grown on a cellulose-based medium; however, the genetic pathways needed for this production are unknown and the lack of genetic tools makes traditional reverse genetics difficult. We present the genomic characterization of A. sarcoides and use transcriptomic and metabolomic data to describe the genes involved in cellulose degradation and to provide hypotheses for the biofuel production pathways. In total, almost 80 biosynthetic clusters were identified, including several previously found only in plants. Additionally, many transcriptionally active regions outside of genes showed condition-specific expression, offering more evidence for the role of long non-coding RNA in gene regulation. This is one of the highest quality fungal genomes and, to our knowledge, the only thoroughly annotated and transcriptionally profiled fungal endophyte genome currently available. The analyses and datasets contribute to the study of cellulose degradation and biofuel production and provide the genomic foundation for the study of a model endophyte system.
Highlights
Global climate change and decreasing fuel reserves are driving a push towards biologically derived fuels from plant wastes
Identified as Gliocladium roseum, this organism was shown to produce a series of molecules of potential interest as biofuels when grown on a cellulose-based medium [4]
Genome assembly and annotation The A. sarcoides NRRL 50072 genome was sequenced resulting in approximately 38-fold coverage of the estimated 34 Mb genome [24]
Summary
Global climate change and decreasing fuel reserves are driving a push towards biologically derived fuels from plant wastes. The optimal biofuel for immediate implementation is one that functions within the context of current infrastructure, in particular with existing engines and distribution systems This would require chemical similarity to gasoline, which is a mixture of hydrocarbons with an average chain length of eight [1]. Fungi have been recognized as producers of eight carbon (C8) volatiles for nearly 80 years and are a major global carbon recycler [2,3]; despite the interest in these compounds, the genes responsible for their production remain largely undefined. One such producer of C8 volatiles is the endophyte Ascocoryne sarcoides (NRRL 50072). Understanding and optimizing biological production of such molecules is an area of active research (reviewed in [8])
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.