Abstract

A series of genetically related lines of common bean (Phaseolus vulgaris L.) integrate a progressive deficiency in major storage proteins, the 7S globulin phaseolin and lectins. SARC1 integrates a lectin-like protein, arcelin-1 from a wild common bean accession. SMARC1N-PN1 is deficient in major lectins, including erythroagglutinating phytohemagglutinin (PHA-E) but not α-amylase inhibitor, and incorporates also a deficiency in phaseolin. SMARC1-PN1 is intermediate and shares the phaseolin deficiency. Sanilac is the parental background. To understand the genomic basis for variations in protein profiles previously determined by proteomics, the genotypes were submitted to short-fragment genome sequencing using an Illumina HiSeq 2000/2500 platform. Reads were aligned to reference sequences and subjected to de novo assembly. The results of the analyses identified polymorphisms responsible for the lack of specific storage proteins, as well as those associated with large differences in storage protein expression. SMARC1N-PN1 lacks the lectin genes pha-E and lec4-B17, and has the pseudogene pdlec1 in place of the functional pha-L gene. While the α-phaseolin gene appears absent, an approximately 20-fold decrease in β-phaseolin accumulation is associated with a single nucleotide polymorphism converting a G-box to an ACGT motif in the proximal promoter. Among residual lectins compensating for storage protein deficiency, mannose lectin FRIL and α-amylase inhibitor 1 genes are uniquely present in SMARC1N-PN1. An approximately 50-fold increase in α-amylase inhibitor like protein accumulation is associated with multiple polymorphisms introducing up to eight potential positive cis-regulatory elements in the proximal promoter specific to SMARC1N-PN1. An approximately 7-fold increase in accumulation of 11S globulin legumin is not associated with variation in proximal promoter sequence, suggesting that the identity of individual proteins involved in proteome rebalancing might also be determined at the translational level.

Highlights

  • Storage protein deficiency in crops is compensated through a mechanism of proteome rebalancing, whereby seed protein concentration is maintained at its normal level (Herman, 2014; Wu and Messing, 2014)

  • Partial compensation by a leucoagglutinating phytohemagglutinin, encoded by PDLEC2 (Voelker et al, 1986), α-amylase inhibitor like protein, α-amylase inhibitor 1 and mannose lectin FRIL are apparent in these data

  • The goal of this study was to identify genetic polymorphisms associated with storage protein deficiency and proteome rebalancing in common bean, using the genetically related lines SARC1, SMARC1-PN1 and SMARC1N-PN1 and their parental background Sanilac

Read more

Summary

Introduction

Storage protein deficiency in crops is compensated through a mechanism of proteome rebalancing, whereby seed protein concentration is maintained at its normal level (Herman, 2014; Wu and Messing, 2014). The deficiency in phaseolin and lectins is associated with an increased concentration of sulfur amino acids, cysteine and methionine, primarily at the expense of the non-protein amino acid, S-methylcysteine, and increased levels of sulfurrich proteins (Taylor et al, 2008; Marsolais et al, 2010; Yin et al, 2011; Liao et al, 2012). This property is of interest to improve protein quality and relevant to nutritional claims on protein content. The changes in protein composition are associated with increased protein solubility (Taylor et al, 2008)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call