Abstract

Neisseria meningitidis is a frequent colonizer of the human nasopharynx, with asymptomatic carriage providing the reservoir for invasive, disease-causing strains. Serogroup Y (MenY) strains are a major cause of meningococcal disease. High-resolution genetic analyses of carriage and disease isolates can establish epidemiological relationships and identify potential virulence factors. Whole-genome sequence data were obtained for 99 MenY carriage isolates recovered in the United Kingdom during 1997-2010. Sequences were compared to those of 73 MenY invasive isolates recovered during 2010-2011, using a gene-by-gene approach. Comparisons across 1605 core genes resolved 91% of isolates into one of 8 clusters containing closely related disease and carriage isolates. Six clusters contained carried meningococci isolated during 1997-2001, suggesting temporal stability. One cluster of isolates, predominately sharing the designation Y: P1.5-1,10-1: F4-1: ST-1655 (cc23), was resolved into one subcluster with 86% carriage isolates and a second with 90% invasive isolates. These subclusters were defined by specific allelic differences in 5 core genes encoding glycerate kinase (glxK), valine-pyruvate transaminase (avtA), superoxide dismutase (sodB), and 2 hypothetical proteins. High-resolution genetic analyses detected long-term temporal stability and temporally overlapping carriage and disease populations for MenY clones but also evidence of a disease-associated clone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.