Abstract

Experimental studies and epidemiological observations during the first wave of the pandemic (H1N1) 2009 suggest that a novel influenza A (H1N1) virus has significant pandemic potential based on high transmissibility of the virus. Substantial uncertainty remains regarding evolution of the clinical severity of this pandemic during the transition to the second wave which is currently underway in the Northern Hemisphere. We carried-out analysis of large volume of clinical, epidemiological and genomics data for assessment of evolution of the current pandemic in United States, Canada, United Kingdom, Australia and Japan based on official reports of public health agencies of corresponding countries. Analysis of reported sequences of virus strains isolated from postmortem samples indicates that 42.9% of individuals who died from laboratory-confirmed cases of the pandemic (H1N1) were infected with the hemagglutinin (HA) Q310H mutant virus. Overall, six of seven (86%) of virus isolates recovered from the necropsy samples have at least one mutation within the HA 301–316 or HA 219–240 regions. During the second wave of the pandemic (H1N1) 2009, there is an increased number of reported double mutant virus isolates with mutations within both of these HA regions. Mutations within HA 219-240 region at the position D239 (D239E/G/N) are reported with higher frequency. In addition, D239G mutants were detected more frequently in viruses isolated from patients with fatal outcomes and in isolates from lungs. Multiple viral isolates with the novel HA 301-316 mutations (I312V and P314S) have been documented. Statistically significant increase of detection of mutant viruses and H1N1-related death rates is documented in July-September reporting time periods. Our analysis seems to indicate that evolution of current pandemic is associated with notable changes in mortality rate among hospitalized patients and increasing number of reported cases of novel mutations of HA gene. Recently emerged HA mutants are: (1) detected in large proportion of virus isolates recovered from the postmortem samples; (2) documented in multiple independent reports around the world; (3) expanding within global viral population; (4) manifesting spatial and temporal patterns of association with increased mortality rate of hospitalized patients. Identification of candidate virus mutants with potential association to increasing disease severity should facilitate clinical and experimental testing of the validity of both “antigenic drift” and increase virulence hypotheses. The results of these follow-up experiments may have a significant impact on ultimate outcomes of current pandemic. Our analysis indicates the urgent need for international surveillance systems that track disease severity and individual patient influenza sequence data in a representative fashion. Information gained from this type of surveillance will direct experimental work that assesses influenza strain-specific features of virulence and transmissibility through carefully designed and timely executed laboratory studies. Practical implementation of these surveillance systems would facilitate the timely evidence-based resolution of critically important relationships between the antigenic drift of mutant strains and immunogenicity of existing vaccines which should be assessed in the laboratory setting during the course of the ongoing pandemic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call