Abstract

The conversion of lignocellulosic waste to energy offers a cost-effective biofuel. The current study discusses the utilization of cellulose in rice husks by lichen-associated Streptomyces sp. MS2A via carbohydrate metabolism. Out of 39 actinobacteria, one actinobacterial strain MS2A, showed CMCase, FPase, and cellobiohydrolase activity. The whole genome analysis of Streptomyces sp. MS2A showed maximum similarity with Streptomyces sp. CCM_MD2014. The genome analysis confirmed the presence of cellulose-degrading genes along with xylan-degrading genes that code for GH3, GH6, GH9, GH11, GH43, GH51, and 15 other GH families with glycosyl transferase, carbohydrate-binding modules, and energy metabolism groups. Protein family analysis corroborates the enzyme family. Among the 19,402 genes of Streptomyces sp. MS2A, approximately 70 GH family codes for lignocellulose degradation enzymes. The structure of cellulase was modeled and validated. Scanning electron microscopy and gas chromatography–mass spectrometry (GCMS) was performed to analyze the lignocellulosic degradation of rice husk and the end product bioethanol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call