Abstract

Rates of antimicrobial-resistant Helicobacter pylori infection are rising globally, but little is known about contemporary resistance patterns, virulence factors, and phylogenetic patterns of isolates within Australia. We aimed to characterize antimicrobial resistance and genetic mutations associated with adverse clinical outcomes. Whole genome sequencing, culturing, and antibiotic sensitivity data for refractory H.pylori isolates at Australian centers were collected between 2013 and 2022. Phylogenetic origins, antibiotic resistance mutations, and virulence factors were examined with phenotypic resistance profiles. One hundred thirty-five isolates underwent culture, with 109 of these undergoing whole genome sequencing. Forty-three isolates were isolated from patients in South Australia and 66 from Western Australia. Isolates originated primarily from hpEurope (59.6%), hpEastAsia (25.7%), and hpNEAfrica (6.4%). Antimicrobial resistance to clarithromycin was seen in 85% of isolates, metronidazole in 52%, levofloxacin in 18%, rifampicin in 14%, and amoxicillin in 9%. Most isolates (59%) were multi-drug resistant. Resistance concordance between genetically determined resistance and phenotypic resistance was 92% for clarithromycin and 94% for levofloxacin. Analysis of virulence factors demonstrated cag pathogenicity island (cagPAI) in 67% of isolates and cagA in 61%, correlating with isolate genetic origin. The most virulent s1m1 vacuolating cytotoxin A genotype was present in 26% of isolates. Refractory H.pylori isolates in Australia emanate from multiple global origins. Strong concordance between genetic and phenotypic antibiotic resistance profiles raises the possibility of utilizing genetic profiling in clinical practice. The dynamic landscape of H.pylori in Australia warrants the establishment of a national database to monitor H.pylori resistance and evolving virulence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.