Abstract

The ZRT-and IRT-like proteins (ZIP) comprise a large family of transition metal transporters in plants that have diverse functions to transport zinc, iron, copper, etc. Here, we provided a complete overview of this gene family in rice (Oryza sativa L.). Based on the hidden Markov model and BLAST analysis, a total of 17 ZIP-coding genes were identified and further studied by semi-quantitative RT-PCR analysis. Sequence analysis revealed 17 putative genes distributed randomly on eight chromosomes. Although most of the predicted proteins had typical characteristics of the ZIP protein family, the extent of their sequence similarity varied considerably. The expression patterns of OsZIP1, OsZIP3, and OsZIP4, which encode Zn2+ transporters in rice, were studied in the Zn-efficient and Zn-inefficient rice genotypes (IR8192 and Erjiufeng) by semi-quantitative RT-PCR analysis of roots, shoots, and panicle from the plants grown under Zn deficiency and normal conditions. OsZIP1 was expressed only in the roots and very weakly if at all in the panicles, while the other two genes were expressed in all parts of plants under study. The Zn-deficient conditions up-regulated the expression of OsZIP1, OsZIP3, and OsZIP4 in the roots and that of OsZIP4 in the shoots of both genotypes, indicating that all these genes may participate in rice zinc nutrition. Furthermore, the expression of OsZIP3 and OsZIP4 was found to be much stronger in the roots of IR8192 than those of Erjiufeng, which suggests that these genes may contribute to high Zn efficiency in rice. The expression patterns and the roles of other OsZIPs are also discussed on the basis of the phylogenetic tree of ZIP proteins and RT-PCR analysis of the two rice genotypes with different zinc efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.