Abstract

Domestic ducks are considered to have been tamed from the mallard or a descendant of the mallard and the spot-billed duck. Domestic ducks show remarkable phenotypic variation in morphology, physiology and behaviour. However, the molecular genetics of the origin and phenotypic variation of ducks are still poorly studied. Here, we present mallard and spot-billed genomes and perform whole-genome sequencing on eight domestic duck breeds and eight wild duck species. Surprisingly, analyses of these data support a model in which domestic ducks diverged from their closest wild lineage (mallard ducks and spot-billed ducks) at the last glacial period (LGP, 100-300 kilo years ago (Kyr)). The wild lineage further speciated into mallard ducks and spot-billed ducks approximately 70 Kyr, whereas the domestic lineage population decreased through the LGP. A scan of wild duck genomes compared with domestic duck genomes identified numerous loci that may have been affected by positive selection in ancestral wild ducks after their divergence from domestic lineages. Function analyses suggested that genes usually affecting organ development and energy metabolism may involve long-distance flight ability. Further selective sweep analyses identified two genes associated with egg production and three genes related to feeding modulation under selection in domestic ducks. These analyses unravel a distinct evolutionary pattern of ducks and two wild duck de novo genomes, thus providing a novel resource for speciation studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.