Abstract

BackgroundHelminth infections affect ~ 60% of the human population that lives in tropical and subtropical regions worldwide. These infections result in diseases like schistosomiasis, lymphatic filariasis, river blindness and echinococcosis. Here we provide a comprehensive computational analysis of the aminoacyl tRNA synthetase (aaRS) enzyme family from 27 human-infecting helminths. Our analyses support the idea that several helminth aaRSs can be targeted for drug repurposing or for development of new drugs. For experimental validation, we focused on Onchocerciasis (also known as “river blindness”), a filarial vector-borne disease that is prevalent in Africa and Latin America. We show that halofuginone (HF) can act as a potent inhibitor of Onchocerca volvulus prolyl tRNA synthetase (OvPRS).ResultsThe conserved enzyme family of aaRSs has been validated as druggable targets in numerous eukaryotic parasites. We thus embarked on assessing aaRSs from the genomes of 27 helminths that cause infections in humans. In order to delineate the distribution of aaRSs per genome we utilized Hidden Markov Models of aaRS catalytic domains to identify all orthologues. We note that Fasciola hepatica genome encodes the highest number of aaRS-like proteins (69) whereas Taenia asiatica has the lowest count (32). The number of genes for any particular aaRS-like protein varies from 1 to 8 in these 27 studied helminths. Sequence alignments of helminth-encoded lysyl, prolyl, leucyl and threonyl tRNA synthetases suggest that various known aaRS inhibitors like Cladosporin, Halofuginone, Benzoborale and Borrelidin may be of utility against helminths. The recombinantly expressed Onchocerca volvulus PRS was used as proof of concept for targeting aaRS with drug-like molecules like HF.ConclusionsSystematic analysis of unique subdomains within helminth aaRSs reveals the presence of a number of non-canonical domains like PAC3, Utp-14, Pex2_Pex12 fused to catalytic domains in the predicted helminth aaRSs. We have established a platform for biochemical validation of a large number of helminth aaRSs that can be targeted using available inhibitors to jump-start drug repurposing against human helminths.

Highlights

  • Helminth infections affect ~ 60% of the human population that lives in tropical and subtropical regions worldwide

  • To study the evolutionary aspects of aminoacyl tRNA synthetases present in these 27 helminths, as an example, we studied the evolutionary linkages of the two PRSs in Onchocerca volvulus of its total of 39 Aminoacyl tRNA synthetases (aaRSs)

  • We have modelled four aminoacyl tRNA synthetases from Brugia malayi and Onchocerca volvulus in order to investigate whether these helminth enzymes may be druggable just as their homologs are [19, 37,38,39]

Read more

Summary

Introduction

Helminth infections affect ~ 60% of the human population that lives in tropical and subtropical regions worldwide. These infections result in diseases like schistosomiasis, lymphatic filariasis, river blindness and echinococcosis. Helminths are common infectious agents of humans in developing countries and cause significant mortality and morbidity [1]. Some common diseases caused by helminths are river blindness, echinococcosis, dracunculiasis, taeniasis, schistosomiasis and lymphatic filariasis. Schistosomiasis alone infects ~ 230 million people in the developing world [4]. Among people living in impoverished areas of developing countries, Onchocerciasis is prevalent and causes skin disease and visual impairment, Goel et al BMC Genomics (2019) 20:333 while limb and genital deformities are the outcome of lymphatic filariasis [1]. Helminth infections are a serious cause of poor health in many countries

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.