Abstract

Myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are heterogeneous myeloid neoplasms that frequently evolve into secondary acute myeloid leukemia (sAML). Recent progress in next-generation sequencing technologies has allowed us to discover frequent mutations throughout the coding regions of MDS, MDS/MPN, and sAML, subsequently providing information on more than 60 driver genes in these diseases. As shown by many study groups recently, such driver mutations are acquired in a gene-specific fashion. DDX41 and SAMD9/SAMD9L mutations are observed in germline cells long before MDS presentation. In blood samples from healthy elderly individuals, somatic DNMT3A, TET2, and ASXL1 mutations are detected as age-related clonal hematopoiesis and supposed to be a risk factor for hematological neoplasms. Recent reports on MDS have shown that mutations in genes such as NRAS and FLT3, designated as Type I genes, were significantly associated with leukemic evolution. Another type (Type II) of genes, including RUNX1 and GATA2, has been shown to be related to the progression from low-risk to high-risk MDS. These driver mutations are significantly concomitant during disease progression. Overall, various types of driver mutations are sequentially acquired in MDS, accounting for the heterogeneity of these disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call